Greasing the Wheels of the Future with Cooking Oil-Boosted Seeds

Greasing the Wheels of the Future with Cooking Oil-Boosted Seeds

Cooking oil is one of those things in a kitchen that I think about as a means to an end—deliciously fried food —rather than an ingredient itself. Thankfully, a team of scientists working at Singapore’s Nanyang Technological University has spared much more than a passing thought for this culinary workhorse. They’ve discovered a way of editing the genes of plants to produce seeds with a staggering 15-18% more oil in them. They’re planning for this increased yield to reduce the space required to raise oil-producing plants, like sunflower, peanut, and soy, and therefore decrease the pressure of industrial agriculture on our environment.

“The secret to helping plants store more oil in their seeds is one of their proteins called WRINKLED1 (WRI1). Scientists have known for over two decades that WRI1 plays an important role in controlling plant seed oil production. […]

Published in the scientific journal Science Advances, the team detailed the molecular structure of WRI1 and how it binds to plant DNA—which signals to the plant how much oil to accumulate in its seeds.

Based on the understanding that the atomic structure of the WRI1-DNA complex revealed, the team modified WRI1 to enhance its affinity for DNA in a bid to improve oil yield. In this approach, some portions in WRI1 were selected for modifications to improve its binding to DNA and several forms of WRI1 were produced.

These candidate WRI1s were then further tested to assess their ability to activate oil production in plant cells. As expected by the team, they showed that their modified versions of WRI1 increased DNA binding ten-fold compared to the original WRI1—ultimately leading to more oil content in its seeds.”

The team also determined that the binding mechanism between WRI1 and the DNA of their test plants (Nicotiana benthamiana and Arabidopsis thaliana) was “extensively conserved,” meaning it may be common to a large number of plant species. In this, they may have uncovered a bonus feature: upping the fat content of nuts and seeds that are eaten as-is (and not just pressed for oil) means that the people who consume them can feel satisfied faster, and meet their nutritional needs with less bulk—a boon for those living in places where sourcing food is a problem.

We at DFC do love a bit of judicious gene editing —anything that gets food into the mouths of hungry folks is a good thing. That, plus the space-saving aspect, and this new invention is primed for a well-oiled future!