What the Cuttlefish Saw: 3D Hunting and the Structure of the Brain

What the Cuttlefish Saw: 3D Hunting and the Structure of the Brain

cuttlefish hunting

If the octopus is the mastermind of the sea, then I consider the cuttlefish its tough, canny cousin — a cephalopod enforcer with a literal backbone (not really: it’s an internal shell), a Joe “Pesce,”  if you will.
Okay, okay, I’ll stop… But a team of scientists from the University of Cambridge and the University of Minnesota won’t: won’t stop trying to understand the cuttlefish predation process using unusual and hilarious means, that is! In an experiment conducted at the Woods Hole Oceanographic Institute, the team outfitted cuttlefish with 3D glasses — the classic, monster-movie, red-and-blue ones — in an effort to find out how they hunt their especially skittish aquatic prey. Turns out, it’s a delicate proposition: cuttlefish use their long dual feeding tentacles to snag dinner, and they have to be just the right distance. If not, they risk scaring the doomed shrimp or crab away, or even missing it entirely. Humans use stereopsis, or binocular, vision as the basis of our depth perception — but do cuttlefish?
“To test how the cuttlefish brain computes distance to an object, the team trained cuttlefish to wear 3D glasses and strike at images of two walking shrimp, each a different color displayed on a computer screen […]

The images were offset, allowing for the researchers to determine if the cuttlefish were comparing images between the left and the right eyes to gather information about distance to their prey. […] Depending on the image offset, the cuttlefish would perceive the shrimp to be either in front of or behind the screen. The cuttlefish predictably struck too close to or too far from the screen, according to the offset.
‘How the cuttlefish reacted to the disparities clearly establishes that cuttlefish use stereopsis when hunting,’ said Trevor Wardill, assistant professor at the Department of Ecology, Evolution and Behavior in the College of Biological Sciences. ‘When only one eye could see the shrimp, meaning stereopsis was not possible, the animals took longer to position themselves correctly. When both eyes could see the shrimp, meaning they utilized stereopsis, it allowed cuttlefish to make faster decisions when attacking. This can make all the difference in catching a meal.’”
While this experiment uncovers one point where cuttlefish and human vision dovetail, that is where the similarities end. Cuttlefish process stereoscopic images differently than humans do, due to their vastly different brains. Unlike us, they don’t have an occipital lobe; that is, a part of the brain that is specifically dedicated to processing visual stimuli. That means that stereopsis in humans (and other vertebrates) and cuttlefish developed independently. The next step is for researchers to dissect cuttlefish brain circuitry, to see if they can pin this fascinating difference down!
It’s staggering that brains as different as humans and cuttlefish can develop the exact same skill. We humans can learn so much from the natural world — not least the fact that despite our advancements we are animals too.

From Beds to the Podium: Recycling at the 2020 Olympics

Olympic and Paralympic officials in Tokyo are scoring a point for sustainability in the design of athletes’ accommodations for the summer Games this July and August. Specifically, the bedframes that the competitors will be sleeping on between matches, races, or bouts in the Athletes Village will be made of a sturdy but recyclable cardboard.
As anyone who has ever tried to collapse a shipping box to go in the blue bin knows, corrugated cardboard can be flimsy on its sides, but tenaciously durable along its folded edges. The Tokyo bedframes are constructed out of several folded modules that seem to take advantage of that fact. (Takashi Kitajima, general manager of the Athletes Village, has stated that the cardboard bedframes are stronger than wood.) The organizers envision total recyclability of the bedframes after the Olympics and Paralympics into a variety of paper products. Additionally, the plastic-based mattresses will be fully recycled into plastic items.
“‘The organizing committee was thinking about recyclable items, and the bed was one of the ideas,’ Kitajima explained, crediting local Olympic sponsor Airweave Inc. for the execution.

Organizers say this is the first time that the beds and bedding in the Athletes Village have been made of renewable materials.

The Athletes Village being built alongside Tokyo Bay will comprise 18,000 beds for the Olympics and be composed of 21 apartment towers. Even more building construction is being planned in the next several years.

Real estate ads say the units will be sold off afterward, or rented, with sale prices starting from about 54 million yen—or about $500,000—and soaring to three or four times that much.”

Japan in a very recycling-conscious society; trust them to come up with such a staggering plan, and follow through with it! They are also a practical culture and assure athletes their recyclable beds are guaranteed to support a sleeping weight of 200kg — though they can’t guarantee they’ll hold up under a celebratory gold-medal bed-jumping party, or any other particularly vigorous, um, sport that athletes at high-level competitions are notorious for. Regardless, we at DFC wish all Olympic and Paralympic competitors the absolute best and look forward to watching their (well-rested!) efforts this summer.