416-479-0074

Trip Again, Trip Better: Building a Smarter Prosthetic Leg

Trip Again, Trip Better: Building a Smarter Prosthetic Leg

We behind DFC are a military family, and will forever be thankful to service members everywhere for the sacrifices they make for our country. So, when tech news comes down the pipes with a particular application for military members and veterans, we twig to it immediately!
 
One such development is Vanderbilt University’s recent research into improving the stumble response in computerized prosthetic legs. (Even the most advanced prosthetic has difficulty recovering after a trip; as a result, people with above-the-knee amputations experience significantly more falls than their peers with two biological legs.)
 
First, the team is looking at how able-bodied folks compensate for unexpected trip hazards in their way. They do this by setting volunteers on a treadmill, blocking their vision, and then literally tripping them — 190 times. From Research News @Vanderbilt:
 
“Special goggles kept [volunteer Andrés Martínez] from looking down. Arrows on an eye-level screen kept him from walking off the sides. A harness attached to a ceiling beam kept him safe. Sure enough, when a computer program released the steel block, it glided onto the treadmill, and the Vanderbilt University PhD student struggled to stay on his feet. […]

‘Not only did our treadmill device have to trip them, it had to trip them at specific points in their gait,’ said Shane King, a PhD student and lead author on the paper. ‘People stumble differently depending on when their foot hits a barrier. The device also had to overcome their fear of falling, so they couldn’t see or feel when the block was coming.’
 
In addition to protecting test subjects, the harness included a scale. If a subject put 50 percent or more of their weight on it during a stumble, that counted as a fall.”
 
Take a look at the treacherous treadmill in action f.
 
It’s fascinating to see such a natural human action (that we often want to pretend never happened!) broken down and studied. A lot goes on in our brains and bodies when we trip on something — believe me, after I mangled my ankle and knee in seconds in a dog walking accident a few years ago, I know! It’s striking how much work needs to go into making a computer do what we already do so well, but the payoff for bionic users will be immense. I look forward to how this concept develops.